发明电脑的人叫什么,发明家如何操作电脑系统
1.电脑之父是谁
2.冯·诺依曼理论体系下的计算机五大逻辑部件
3.超级计算机的发展历史
4.世界上第一台计算机的发明者是谁?
电脑键盘是谁发明的?
键盘的历史
QWERTY键盘发明人--肖尔斯
键盘非常悠久,早在1714年,就开始相继有英、美、法、意、瑞士等国家的人发明了各种形式的打字机,最早的键盘就是那个时候用在那些技术还不成熟的打字机上的。直到1868年,“打字机之父”——美国人克里斯托夫·拉森·肖尔斯(Christopher Latham Sholes)获打字机模型专利并取得经营权经营,又于几年后设计出现代打字机的实用形式和首次规范了键盘,即现在的“QWERTY”键盘。
为什么要将键盘规范成现在这样的“QWERTY”键盘按键布局呢?这是因为最初,打字机的键盘是按照字母顺序排列的,而打字机是全机械结构的打字工具,因此如果打字速度过快,某些键的组合很容易出现卡键问题,于是克里斯托夫·拉森·肖尔斯(Christopher Latham Sholes)发明了QWERTY键盘布局,他将最常用的几个字母安置在相反方向,最大限度放慢敲键速度以避免卡键。肖尔斯在1868年申请专利,1873年使用此布局的第一台商用打字机成功投放市场。这就是为什么有今天键盘的排列方式。
QWERTY的键盘按键布局方式非常没效率。比如:大多数打字员惯用右手,但使用QWERTY键盘,左手却负担了57%的工作。两小指及左无名指是最没力气的指头,却频频要使用它们。排在中列的字母,其使用率仅占整个打字工作的30%左右,因此,为了打一个字,时常要上上下下移动指头。
1888年全美举行打字公开比赛,法院速记员马加林按照明确的指法分工展示了他的盲打技术,错误只有万分之三,使在场人惊讶不已,据记载马加林的奖金是0元, 从这以后很多人效仿这种盲打,在美国也开始有了专门培养打字员的学校。
由于盲打技术的出现,使得击键速度足以满足日常工作的需要,然而在60年后(1934年),华盛顿一个叫德沃拉克(Dvorak)的人为使左右手能交替击打更多的单词又发明了一种新的排列方法,这个键盘可缩短训练周期1/2时间,平均速度提高35%。DVORAK键盘布局原则是:1、尽量左右手交替击打,避免单手;2、越排击键平均移动距离最小;3、排在导键位置应是最常用的字母。
比DUORAK键盘更加合理、高效的是理连·莫尔特(Lillian Malt)发明的MALT键盘。它改变了原本交错的字键行列,并使拇指得到更多使用、使“后退键”(Backspace)及其他原本远离键盘中心的键更容易触到。但MALT键盘需要特别的硬件才能安装到电脑上,所以也没有得到广泛应用。
到了20世纪中期,键盘又多了一个用武之地——作为电脑的基本输入设备。另一方面,至今,“QWERTY”键盘仍然是使用的最多的键盘布局方式,这是一个非常典型的“劣势产品战胜优势产品”的例子。
IT人物传记:QWERTY键盘发明人--肖尔斯
今天,个人电脑最常用的输入设备是键盘和鼠标。
通用101键或102键键盘根据英文字母的排列方式而命名,称为QWERTY键盘。毋庸置疑,它“脱胎”于英文打字机。比尔·盖茨曾用这种键盘来说明什么叫“事实上”的标准:“英语打字机和计算机键盘上排字母的顺序是QWER?TY,没有一条法律说它们必须这样排列。但它们却行之有效,大多数用户会执着于这种标准。”有趣的是,这种排列方式并不是合理的布局。
QWERTY键盘的发明者叫克里斯托夫·肖尔斯(C.Sholes),生活在19世纪美国南北战争时期,是《密尔沃基新闻》编辑。肖尔斯在好友索尔协助下,曾研制出页码编号机,并获得发明专利。报社同事格利登建议他在此基础上进一步研制打字机,并给他找来英国人的试验资料。
在倾注了肖尔斯与两位合伙人数年心血后,1860年,他们制成了打字机原型。然而,肖尔斯懊丧地发现,只要打字速度稍快,他的机器就不能正常工作。按照常规,肖尔斯把26个英文字母按ABCDEF的顺序排列在键盘上,为了使打出的字迹一个挨一个,按键不能相距太远。在这种情况下,只要手指的动作稍快,连接按键的金属杆就会相互产生干涉。为了克服干涉现象,肖尔斯重新安排了字母键的位置,把常用字母的间距尽可能排列远一些,延长手指移动的过程。
反常思维方法竟然取得了成功。肖尔斯激动地打出了一行字母:“第一个祝福,献给所有的男士,特别地,献给所有的女士。”肖尔斯“特别地”把他的发明奉献给妇女,他想为她们开创一种亘古未有的新职业———“打字员”。1868年6月23日,美国专利局正式接受肖尔斯、格利登和索尔共同注册的打字机发明专利。
以现在的目光看,肖尔斯发明的键盘字母排列方式缺点太多。例如,英文中10个最常用的字母就有8个离规定的手指位置太远,不利于提高打字速度;此外,键盘上需要用左手打入的字母排放过多,因一般人都是“右撇子”,所以用起来十分别扭。有人曾作过统计,使用QWERTY键盘,一个熟练的打字员8小时内手指移动的距离长达25.7公里。然而,QWERTY键盘今天仍是电脑键盘“事实上”的标准。虽然1932年华盛顿大学教授奥古斯特·多芙拉克(A.Dvorak)设计出键位排列更科学的DVORAK键盘,但始终成不了气候。 鼠标是美国科学家道格拉斯·恩格巴特(D.Engelbart)在1964年发明的。尼葛洛庞帝教授在《数字化生存》里写道:“当初他设计鼠标是为了指点文件,而不是作画。但是这个发明却流传下来,而且今天随处可见。”
恩格巴特是位卓越的思想家、发明家和电脑先驱人物,一生著有25部著作,拥有20多项发明专利。他在超文本和超媒体系统、人机交互和网络技术等诸多领域都作出了天才的预见并提出理论框架。他穷其一生的精力,想为人类研制出增加智慧的计算机,鼠标只是他一个附带的小发明。
恩格巴特二战期间曾担任过舰艇雷达技术员,战后获加州大学伯克利分校博士学位。他常常幻想着电脑也能像雷达一样显示图形,并可以通过操纵杆来控制操作。1964年,在国防部高级规划研究署(ARPA)资助下,恩格巴特建立了一个“扩增研究中心”来实现他的梦想。1968年,在美国秋季计算机会议上,恩格巴特向与会者展示了他的新发明:用一个键盘、一台显示器和一个粗糙的鼠标器,远程操作25公里以外的一台简陋的大型计算机,在当时仍然采用穿孔卡输出的人群中间,引起了极大地轰动。
恩格巴特鼠标原型的外壳用木头精致地雕刻而成,仅有一个按键,而不像现代鼠标有三个按键。它的底部安装着金属滚轮,用来控制光标的移动。1970年获得专利时,这个小装置的名称是“显示系统X-Y位置指示器”。美国有人开玩笑说,只有男人才会想到把它叫做“鼠标”,因为在美国俚语里,“老鼠”(Mouse)亦有“女朋友”的寓义。
1972年,施乐公司帕洛阿托研究中心(PARC)研制出图形界面的“阿托”(Alto)微电脑,研制者中间就有从恩格巴特实验室“跳槽”的人,他们把鼠标配置在这台电脑上,作为一种方便的图形控制装置。1983年,苹果公司也跟着把他们的第一个鼠标装备在“丽萨”(Lisa)微电脑上。从此,鼠标逐渐成为个人电脑必备的输入设备。(n104)
电脑之父是谁
人类会发明计算机,最初的目的是帮助处理复杂的数字运算。而这种人工计算器的概念,最早可以追溯到十七世纪的法国大思想家帕斯卡。
帕斯卡的父亲担任税务局长,当时的币制不是十进制,在计算上非常麻烦。帕斯卡为了协助父亲,利用齿轮原理,发明了第一台可以执行加减运算计算器 。
后来,德国数学家莱布尼兹加以改良,发明了可以做乘除运算的计算器。之后虽然在计算器的功能上多所改良与精进,但是,真正的电动计算器,却必须等到公元1944年才制造出来。
扩展资料:
电脑的用途,一般有以下几个方面:
1、数值计算,计算机广泛地应用于科学和工程技术方面的计算,这是计算机应用的一个基本方面,比较熟悉的。如:人造卫星轨迹计算,导弹发射的各项参数的计算,房屋抗震强度的计算等。
2、数据处理,用计算机对数据及时地加以记录、整理和计算,加工成人们所要求的形式,称为数据处理。数据处理与数值计算相比较,它的主要特点是原始数据多,处理量大,时间性强,但计算公式并不复杂。
在计算机应用普及的今天,计算机已经不再只是进行科学计算的工具,计算机更多地应用在数据处理方面。
百度百科-计算机
百度百科-第一代电子计算机
冯·诺依曼理论体系下的计算机五大逻辑部件
人物简介
约翰·冯·诺依曼( John von Neumann,1903-1957),“现代电子计算机之父”,美籍匈牙利人,物理学家、数学家、发明家,“现代电子计算机之父”即电脑(即EDVAC,它是世界上第一台现代意义的通用计算机)的发明者。1903年12月28日生于匈牙 约翰·冯·诺依曼
利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世联邦工业大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年他成为美国普林斯顿大学的第一批终身教授,那时,他还不到30岁。1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院士. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席. 1954年夏,冯·诺依曼被发现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.
编辑本段杰出贡献
主要贡献
冯·诺伊曼是二十世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献。他的工作大致可以分为两个时期:1940年以前,主要是纯粹数学的研究:在数理逻辑方面提出简单而明确的序数理论,并对集合论进行新的公理化,其中明确区别集合与类;其后,他研究希尔伯特空间上线性自伴算子谱理论,从而为量子力学打下数学基础;1930年起,他证明平均遍历定理开拓了遍历理论的新领域;1933年,他运用紧致群解决了希尔伯特第五问题;此外,他还在测度论、格论和连续几何学方面也有开创性的贡献;从1936~1943年,他和默里合作,创造了算子环理论,即现在所谓的冯·诺伊曼代数。 1940年以后,冯·诺伊曼转向应用数学。如果说他的纯粹数学成就属于数学界,那么他在力学、经济学、数值分析和电子计算机方面的工作则属于全人类。第二次世界大战开始,冯·诺伊曼因战事的需要研究可压缩气体运动,建立冲击波理论和湍流理论,发展了流体力学;从1942年起,他同莫根施特恩合作,写作《博弈论和经济行为》一书,这是博弈论(又称对策论)中的经典著作,使他成为数理经济学的奠基人之一。 冯·诺伊曼对世界上第一台电子计算机ENIAC(电子数字积分计算机)的设计提出过建议,1945年3月他在共同讨论的基础上起草EDVAC(电子离散变量自动计算机)设计报告初稿,这对后来计算机的设计有决定性的影响,特别是确定计算机的结构,采用存储程序以及二进制编码等,至今仍为电子计算机设计者所遵循。 1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的缔造者之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。他协助发展了一些算法,特别是方法。 40年代末,他开始研究自动机理论,研究一般逻辑理论以及自复制系统。在生命的最后时刻他深入比较天然自动机与人工自动机。他逝世后其未完成的手稿在1958年以《计算机与人脑》为名出版。 冯·诺伊曼的主要著作收集在《冯·诺伊曼全集》(6卷,1961)中。 无论在纯粹数学还是在应用数学研究方面,冯·诺依曼都显示了卓越的才能,取得了众多影响深远的重大成果。不断变换研究主题,常常在几种学科交叉渗透中获得成就是他的特色。 最简单的来说,他的精髓贡献是2点:2进制思想与程序内存思想。 回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".而在经济学方面,他也有突破性成就,被誉为“博弈论之父”。在物理领域,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值。在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。与同为犹太人的哈耶克一样,他无愧是上世纪最伟大的全才之一。 约翰·冯·诺依曼
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题. 1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对算子代数进行了开创性工作,并奠定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博弈论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博弈论与经济行为》.论文中包含博弈论的纯粹数学形式的阐述以及对于实际博弈应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作. 冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术、数值分析和经济学中的博弈论的开拓性工作. 现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进。 1944年,诺伊曼参加的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数学运算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。 被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制计划,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。 1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈中,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制计划所吸引,他意识到了这项工作的深远意义。 冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力。诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。 EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.报告中,诺伊曼对EDVAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。 设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中采用二进制。报告提到了二进制的优点,并预言,二进制的采用将大简化机器的逻辑线路。 现在使用的计算机,其基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为“计算机之父”。 实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在EDVAC中采用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。
程序内存
程序内存是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先相好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。 针对这个问题,诺伊曼提出了程序内存的思想:把运算程序存在机器的存储器中,程序设计员只需要在存储器中寻找运算指令,机器就会自行计算,这样,就不必每个问题都重新编程,从而大大加快了运算进程。这一思想标志着自动运算的实现,标志着电子计算机的成熟,已成为电子计算机设计的基本原则。 1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想. 冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖。
相关书籍
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版。 另外,冯·诺依曼40年代出版的著作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。他被经济学家公认为博弈论之父。当时年轻的约翰·纳什在普林斯顿求学期间开始研究发展这一领域,并在1994年凭借对博弈论的突出贡献获得了诺贝尔经济学奖。
编辑本段生平经历
前半生 诺伊曼,著名美籍匈牙利数学家。1903年12月3日生于匈牙利布达佩斯的一个犹太人家庭。 冯·诺依曼的父亲麦克斯年轻有为、风度翩翩,凭着勤奋、机智和善于经营,年轻时就已跻身于布达佩斯的银行家行列。冯·诺依曼的母亲是一位善良的妇女,贤慧温顺,受过良好教育。 冯·诺伊曼从小就显示出数学天才,关于他的童年有不少传说。大多数的传说都讲到冯·诺伊曼自童年起在吸收知识和解题方面就具有惊人的速度。六岁时他能心算做八位数乘除法,八岁时掌握微积分,十二岁就读懂领会了波莱尔的大作《函数论》要义。 微积分的实质是对无穷小量进行数学分析。人类探索有限、无限以及它们之间的关系由来已久,l7世纪由牛顿莱布尼茨发现的微积分,是人类探索无限方面取得的一项激动人心的伟大成果。三百年来,它一直是高等学府的教学内容,随着时代的发展,微积分在不断地改变它的形式,概念变得精确了,基础理论扎实了,甚至有不少简明恰当的陈述。但不管怎么说,八岁的儿童要弄懂微积分,仍然是罕见的。上述种种传闻虽然不尽可信,但冯·诺伊曼的才智过人,则是与他相识的人们的一致看法。 1914年夏天,约翰进入了大学预科班学习,是年7月28日,奥匈帝国借故向塞尔维亚宣战,揭开了第一次世界大战的序幕。由于战争连年不断,冯·诺依曼全家离开过匈牙利,以后再重返布达佩斯。当然他的学业也会受到影响。但是在毕业考试时,冯·诺依曼的成绩仍名列前茅。 1921年,冯·诺依曼通过“成熟”考试时,已被大家当作数学家了。他的第一篇论文是和菲克特合写的,那时他还不到18岁。麦克斯由于考虑到经济上原因,请人劝阻年方17的冯·诺依曼不要专攻数学,后来父子俩达成协议,冯·诺依曼便去攻读化学。 其后的四年间,冯·诺依曼在布达佩斯大学注册为数学方面的学生,但并不听课,只是每年按时参加考试。与此同时,冯·诺依曼入柏林大学(1921年),1923年又进入瑞士苏黎世联邦工业大学学习化学。1926年他在苏黎世的获得化学方面的大学毕业学位,通过在每学期期末回到布达佩斯大学通过课程考试,他也获得了布达佩斯大学数学博士学位。 冯·诺依曼的这种不参加听课只参加考试的求学方式,当时是非常特殊的,就整个欧洲来说也是完全不合规则的。但是这不合规则的学习方法,却又非常适合冯·诺依曼。冯·诺依曼在柏林大学学习期间,曾得到化学家哈贝尔的悉心栽培。哈贝尔是德国著名的化学家,由于合成氨而获诺贝尔奖。 逗留在苏黎世期间,冯·诺依曼常常利用空余时间研读数学、写文章和数学家通信。在此期间冯·诺依曼受到了希尔伯特和他的学生施密特和外尔的思想影响,开始研究数理逻辑。当时外尔和波伊亚两位也在苏黎世,他和他们有过交往。一次外尔短期离开苏黎世,冯·诺依曼还代他上过课。聪明的智慧加上得天独厚的栽培,冯·诺依曼在茁壮地成长,当他结束学生时代的时候,他已经漫步在数学、物理、化学三个领域的某些前沿。 1926年春,冯·诺依曼到哥廷根大学任希尔伯特的助手。1927~1929年,冯·诺依曼在柏林大学任兼职讲师,期间他发表了集合论、代数和量子理论方面的文章。l927年冯·诺依曼到波兰里沃夫出席数学家会议,那时他在数学基础和集合论方面的工作已经很有名气。 l929年,冯·诺依曼转任汉堡大学兼职讲师。1930年他首次赴美,成为普林斯顿大学的客座讲师。善于汇集人才的美国不久就聘冯·诺依曼为客座教授。 冯·诺依曼曾经算过,德国大学里现有的和可以期待的空缺很少,照他典型的推理得出,在三年内可以得到的教授任命数是三,而参加竞争的讲师则有40名之多。在普林斯顿,冯·诺依曼每到夏季就回欧洲,一直到l933年担任普林斯顿高级研究院教授为止。当时高级研究院聘有六名教授,其中就包括爱因斯坦,而年仅30岁的冯·诺依曼是他们当中最年轻的一位。 在高等研究院初创时间,欧洲来访者会发现,那里充满着一种极好的不拘礼节的、浓厚的研究风气。教授们的办公室设置在大学的“优美大厦”里,生活安定,思想活跃,高质量的研究成果层出不穷。可以这样说,那里集中了有史以来最多的有数学和物理头脑的人才。 l930年冯·诺依曼和玛丽达·柯维斯结婚。1935年他们的女儿玛丽娜出生在普林斯顿。冯·诺依曼家里常常举办时间持续很长的社交聚会,这是远近皆知的。l937年冯·诺依曼与妻子离婚,1938年又与克拉拉·丹结婚,并一起回普林斯顿。丹随冯·诺依曼学数学,后来成为优秀的程序编制家。与克拉拉婚后,冯·诺依曼的家仍是科学家聚会的场所,还是那样殷勤好客,在那里人人都会感到一种聪慧的气氛。 二次大战欧洲战事爆发后,冯·诺依曼的活动越出了普林斯顿,参与了同反法西斯战争有关的多项科学研究计划。l943年起他成了制造的顾问,战后仍在政府诸多部门和委员会中任职。1954年又成为美国原子能委员会成员。 冯·诺依曼的多年老友,原子能委员会主席斯特劳斯曾对他作过这样的评价:从他被任命到1955年深秋,冯·诺依曼干得很漂亮。他有一种使人望尘莫及的能力,最困难的问题到他手里。都会被分解成一件件看起来十分简单的事情,……用这种办法,他大大地促进了原子能委员会的工作。 晚年 冯·诺依曼的健康状况一直很好,可是由于工作繁忙,到1954年他开始感到十分疲劳。1955年的夏天,X射线检查出他患有癌症,但他还是不停的工作,病势扩展。后来他被安置在轮椅上,继续思考、演说及参加会议。长期而无情的疾病折磨着他,慢慢地终止了他所有的活动。1956年4月,他进入华盛顿的沃尔特·里德医院,1957年2月8日在医院逝世,享年53岁。
集合论、数学基础
冯·诺依曼的第一篇论文是和菲克特合写的,是关于车比雪夫多项式求根法的菲叶定理推广,注明的日期是1922年,那时冯·诺依曼还不满18岁。另一篇文章讨论一致稠密数列,用匈牙利文写就,题目的选取和证明手法的简洁显露出冯·诺依曼在代数技巧和集合论直观结合的特征。 1923年当冯·诺依曼还是苏黎世的大学生时,发表了超限序数的论文。文章第一句话就直率地声称“本文的目的是将康托的序数概念具体化、精确。他的关于序数的定义,现在已被普遍采用。 强烈企求探讨公理化是冯·诺依曼的愿望,大约从l925年到l929年,他的大多数文章都尝试着贯彻这种公理化精神,以至在理论物理研究中也如此。当时,他对集合论的表述处理,尤感不够形式化,在他1925年关于集合论公理系统的博士论文中,开始就说“本文的目的,是要给集合论以逻辑上无可非议的公理化论述”。 有趣的是,冯·诺依曼在论文中预感到任何一种形式的公理系统所具有的局限性,模糊地使人联想到后来由哥德尔证明的不完全性定理。对此文章,著名逻辑学家、公理集合论奠基人之一的弗兰克尔教授曾作过如下评价:“我不能坚持说我已把(文章的)一切理解了,但可以确有把握地说这是一件杰出的工作,并且透过他可以看到一位巨人”。 1928年冯·诺依曼发表了论文《集合论的公理化》,是对上述集合论的公理化处理。该系统十分简洁,它用第一型对象和第二型对象相应表示朴素集合论中的集合和集合的性质,用了一页多一点的纸就写好了系统的公理,它已足够建立朴素集合论的所有内容,并借此确立整个现代数学。 冯·诺依曼的系统给出了集合论的也许是第一个基础,所用的有限条公理,具有像初等几何那样简单的逻辑结构。冯·诺依曼从公理出发,巧妙地使用代数方法导出集合论中许多重要概念的能力简直叫人惊叹不已,所有这些也为他未来把兴趣落脚在计算机和“机械化”证明方面准备了条件。 20年代后期,冯·诺依曼参与了希尔伯特的元数学计划,发表过几篇证明部分算术公理无矛盾性的论文。l927年的论文《关于希尔伯特证明论》最为引人注目,它的主题是讨论如何把数学从矛盾中解脱出来。文章强调由希尔伯特等提出和发展的这个问题十分复杂,当时还未得到满意的解答。它还指出阿克曼排除矛盾的证明并不能在古典分析中实现。为此,冯·诺依曼对某个子系统作了严格的有限性证明。这离希尔伯特企求的最终解答似乎不远了。这是恰在此时,1930年哥德尔证明了不完全性定理。定理断言:在包含初等算术(或集合论)的无矛盾的形式系统中,系统的无矛盾性在系统内是不可证明的。至此,冯·诺依曼只能中止这方面的研究。 冯·诺依曼还得到过有关集合论本身的专门结果。他在数学基础和集合论方面的兴趣一直延续到他生命的结束。
三项最重要的数学工作
在1930~1940年间,冯·诺依曼在纯粹数学方面取得的成就更为集中,创作更趋于成熟,声誉也更高涨。后来在一张为国家科学院填的问答表中,冯·诺依曼选择了量子理论的数学基础、算子环理论、各态遍历定理三项作为他最重要数学工作。 1927年冯·诺依曼已经在量子力学领域内从事研究工作。他和希尔伯待以及诺戴姆联名发表了论文《量子力学基础》。该文的基础是希尔伯特1926年冬所作的关于量子力学新发展的讲演,诺戴姆帮助准备了讲演,冯·诺依曼则从事于该主题的数学形式化方面的工作。文章的目的是将经典力学中的精确函数关系用概率关系代替之。希尔伯特的元数学、公理化的方案在这个生气勃勃的领域里获得了施展,并且获得了理论物理和对应的数学体系间的同构关系。对这篇文章的历史重要性和影响无论如何评价都不会过高。冯·诺依曼在文章中还讨论了物理学中可观察算符的运算的轮廓和埃尔米特算子的性质,无疑,这些内容构成了《量子力学的数学基础》一书的序曲。 1932世界闻名的斯普林格出版社出版了他的《量子力学的数学基础》,它是冯·诺依曼主要著作之一,初版为德文,1943年出了法文版,1949年为西班牙文版,1955年被译成英文出版,至今仍不失为这方面的经典著作。当然他还在量子统计学、量子热力学、引力场等方面做了不少重要工作。 客观地说,在量子力学发展史上,冯·诺依曼至少作出过两个重要贡献:狄拉克对量子理论的数学处理在某种意义下是不够严格的,冯·诺依曼通过对无界算子的研究,发展了希尔伯特算子理论,弥补了这个不足;此外,冯·诺依曼明确指出,量子理论的统计特征并非由于从事测量的观察者之状态未知所致。借助于希尔伯待空间算子理论,他证明凡包括一般物理量缔合性的量子理论之假设,都必然引起这种结果。 对于冯·诺依曼的贡献,诺贝尔物理学奖获得者威格纳曾作过如下评价:“在量子力学方面的贡献,就是以确保他在当代物理学领域中的特殊地位。” 在冯·诺依曼的工作中,希尔伯特空间上的算子谱论和算子环论占有重要的支配地位,这方面的文章大约占了他发表的论文的三分之一。它们包括对线性算子性质的极为详细的分析,和对无限维空间中算子环进行代数方面的研究。 算子环理论始于1930年下半年,冯·诺依曼十分熟悉诺特和阿丁的非交换代数,很快就把它用于希尔伯特空间上有界线性算子组成的代数上去,后人把它称之为冯·诺依曼算子代数。 1936~1940年间,冯·诺依曼发表了六篇关于非交换算子环论文,可谓20世纪分析学方面的杰作,其影响一直延伸至今。冯·诺依曼曾在《量子力学的数学基础》中说过:由希尔伯特最早提出的思想就能够为物理学的量子论提供一个适当的基础,而不需再为这些物理理论引进新的数学构思。他在算子环方面的研究成果应验了这个目标。冯·诺依曼对这个课题的兴趣贯穿了他的整个生涯。 算子环理论的一个惊人的生长点是由冯·诺依曼命名的连续几何。普通几何学的维数为整数1、2、3等,冯·诺依曼在著作中已看到,决定一个空间的维数结构的,实际上是它所容许的旋转群。因而维数可以不再是整数,连续级数空间的几何学终于提出来了。 1932年,冯·诺依曼发表了关于遍历理论的论文,解决了遍历定理的证明,并用算子理论加以表述,它是在统计力学中遍历假设的严格处理的整个研究领域中,获得的第一项精确的数学结果。冯·诺依曼的这一成就,可能得再次归功于他所娴熟掌握的受到集合论影响的数学分析方法,和他自己在希尔伯特算子研究中创造的那些方法。它是20世纪数学分析研究领域中取得的最有影响成就之一,也标志着一个数学物理领域开始接近精确的现代分析的一般研究。 此外冯·诺依曼在实变函数论、测度论、拓扑、连续群、格论等数学领域也取得不少成果。1900年希尔伯特在那次著名的演说中,为20世纪数学研究提出了23个问题,冯·诺依曼也曾为解决希尔伯特第五问题作了贡献。
编辑本段一般应用数学
1940年,是冯·诺依曼科学生涯的一个转换点。在此之前,他是一位通晓物理学的登峰造极的纯粹数学家;此后则成了一位牢固掌握纯粹数学的出神入化的应用数学家。他开始关注当时把数学应用于物理领域去的最主要工具——偏微分方程。研究同时他还不断创新,把非古典数学应用到两个新领域:对策论和电子计算机。
超级计算机的发展历史
冯·诺依曼理论体系下的计算机五大逻辑部件是哪些?
运算器,控制器,储存器,输入装置和输出装置
运算器和控制器统称为处理器,也就是CPU,运算器负责算术运算和逻辑运算,控制器负责键盘,滑鼠等外部装置。
储存器:储存器包括外储存器和储存器,外储存器常见的有硬碟,U盘,MP3等,记忆体储器也就是记忆体RAM,分问SDRAM和DDRAM也就是SD记忆体和DDR记忆体
输入装置:常见的有键盘,滑鼠,写字板,扫描器,摄像头
输出装置:常见的有印表机,显示器,传真机等等
简述冯·诺依曼关于计算机理论体系冯诺依曼的经典理论
冯诺依曼理论的要点是:数字计算机的数制采用二进位制;计算机应该按照程式顺序执行。人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。根据冯诺依曼体系结构构成的计算机,必须具有如下功能: 把需要的程式和资料送至计算机中。
必须具有长期记忆程式、资料、中间结果及最终运算结果的能力。
能够完成各种算术、逻辑运算和资料传送等资料加工处理的能力。
能够根据需要控制程式走向,并能根据指令控制机器的各部件协调操作。 能够按照要求将处理结果输出给使用者。
用图表示计算机五大逻辑部件工作原理计算机五大组成部件:运算器、控制器、储存器、输入装置和输出装置。 1、计算机的中央处理器又称为CPU,它是计算机的核心部分。主要由运算器和控制器组成。 运算器:实现算术运算和逻辑运算的部件。 控制器:计算机的指挥系统。
计算器是按冯.诺依曼理论设计的吗?是,
冯 诺依曼理论内容是什么CUI:冯诺依曼体系机构)
说到计算机的发展,就不能不提到德国科学家冯诺依曼。从20世纪初,物理学和电子学科学家们就在争论制造可以进行数值计算的机器应该采用什么样的结构。人们被十进位制这个人类习惯的计数方法所困扰。所以,那时以研制模拟计算机的呼声更为响亮和有力。20世纪30年代中期,德国科学家冯诺依曼大胆的提出,抛弃十进位制,采用二进位制作为数字计算机的数制基础。同时,他还说预先编制计算程式,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。
冯诺依曼理论的要点是:数字计算机的数制采用二进位制;计算机应该按照程式顺序执行。
人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。
根据冯诺依曼体系结构构成的计算机,必须具有如下功能:
把需要的程式和资料送至计算机中。
必须具有长期记忆程式、资料、中间结果及最终运算结果的能力。
能够完成各种算术、逻辑运算和资料传送等资料加工处理的能力。
能够根据需要控制程式走向,并能根据指令控制机器的各部件协调操作。
能够按照要求将处理结果输出给使用者。
为了完成上述的功能,计算机必须具备五大基本组成部件,包括:
输人资料和程式的输入装置记忆程式和资料的储存器完成资料加工处理的运算器控制程式执行的控制器输出处理结果的输出装置
:education.163./editor_2002/030821/030821_110781.
:f.tsinghua.edu./CourseWare/%BC%C6%CB%E3%BB%FA%BB%F9%B4%A1%D6%AA%CA%B6/%B7%EB%C5%B5%D2%C0%C2%FC%CC%E5%CF%B5%BD%E1%B9%B9%B5%C4%BC%C6%CB%E3%BB%FA.htm
:cqtz./tzzy/xxjs/aosaisource/puter/2.htm
这里所说的汇流排主要是指系统汇流排。PC机的系统汇流排又可分为ISA、EISA、MCA、VESA、PCI、AGP等多种标准。
一、ISA/EISA/MCA/VESA汇流排
ISA(Industry Standard Architecture)是IBM公司为286/AT电脑制定的汇流排工业标准,也称为AT标准。ISA汇流排的影响力非常大,直到现在仍存在大量ISA装置,最新的主机板也还为它保留了一席之地。MCA (Micro Channel Architecture)是IBM公司专为PS/2系统开发的微通道汇流排结构。由于要求使用许可证,违背了PC发展开放的潮流,因此还未有效推广即告失败。
EISA(Extended Industry Standard Architecture),是EISA集团(由Compaq、HP、AST等组成)专为32位CPU设计的汇流排扩充套件工业标准,向下相容ISA,当年在高档桌上型电脑上得到一定应用。VESA(Video Electronics Standards Association),是VESA组织(由IBM、Compaq等发起,有120多家公司参加)按Local Bus(区域性汇流排)标准设计的一种开放性汇流排,但成本较高,只是适用于486的一种过渡标准,目前已经淘汰。
二、PCI汇流排
90年代后,随着图形处理技术和多媒体技术的广泛应用,在以Windows为代表的图形使用者介面(GUI)进入PC机之后,要求PC具有高速的图形及 I/O运算处理能力,这对汇流排的速度提出了挑战。原有的ISA、EISA汇流排已远远不能适应要求,成为整个系统的主要瓶颈。1991年下半年,Intel 公司首先提出了PCI(Peripheral Component Interconnect)的概念,并联合IBM、Compaq、AST、HP、等100多家公司成立了PCI集团。PCI是一种先进的区域性汇流排,已成为区域性汇流排的新标准,是目前应用最广泛的汇流排结构。 PCI汇流排是一种不依附于某个具体处理器的区域性汇流排,从结构上看,PCI是在CPU和原来的系统汇流排之间插入的一级汇流排,需要时具体由一个桥接电路,实现对这一层的智慧装置取得汇流排控制权,以加速资料传输管理。
三、AGP汇流排
虽然现在PC机的图形处理能力越来越强,但要完成细致的大型3D图形描绘,PCI汇流排结构的效能仍然有限。为了让PC的3D应用能力能同图形工作站相比,Intel公司开发了AGP(Aelerated Graphics Port)标准,主要目的就是要大幅提高高档PC机的图形尤其 D图形的处理能力。严格说来,AGP不能称为汇流排,因为它是点对点连线,即连线控制晶片和AGP显示卡。AGP在主记忆体与显示卡之间提供了一条直接的通道,使得3D图形资料越过PCI汇流排,直接送入显示子系统。这样就能突破由于PCI汇流排形成的系统瓶颈,从而达到高效能3D图形的描绘功能。PCI及 AGP插槽外观见图1。标准介面的型别
在微机系统中采用标准介面技术,其目的是为了便于模组结构设计,可以得到更多厂商的广泛支援,便于“生产”与之相容的外部装置和软体。不同型别的外设需要不同的介面,不同的介面是不通用的。以前在8086/286机器上存在过的ST506和ESDI等介面标准都已经淘汰,目前在微机中使用最广泛的介面是:IDE、EIDE、SCSI、USB和IEEE 1394五种。
一、 IDE/EIDE介面
IDE的原文是Integrated Device Electronics,即整合装置电子部件。它是由Compaq开发并由Western Digital公司生产的控制器介面。IDE采用了40线的单组电缆连线。由于把控制器整合到驱动器之中,适配卡已变得十分简单,现在的微机系统中已不再使用适配卡,而把适配电路整合到系统主机板上,并留有专门的IDE联结器插口。IDE由于具有多种优点,且成本低廉,在个人微机系统中得到了广泛的应用。
增强型IDE (Enhanced IDE)是Western Digital为取代IDE而开发的介面标准。在采用EIDE介面的微机系统中,EIDE介面已直接整合在主机板上,因此不必再购买单独的适配卡。与IDE 相比,EIDE具有支援大容量硬碟、可连线四台EIDE装置、有更高资料传输速率(13.3MB/s以上)等几方面的特点。为了支援大容量硬碟,EIDE 支援三种硬碟工作模式:NORMAL、LBA和LARGE模式。
二、Ultra DMA33和Ultra DMA66介面
在ATA-2标准推出之后,SFFC又推出了ATA-3标准。ATA-3标准的主要特点是提高了ATA-2的安全性和可靠性。ATA-3本身并没有定义更高的传输模式。此外,ATA标准本身只支援硬碟,为此SFFC将推出ATA-4标准,该标准将整合ATA-3和ATAPI并且支援更高的传输模式。在 ATA-4标准没有正式推出之前,作为一个过渡性的标准,Quantum和Intel推出了Ultra ATA(Ultra DMA)标准。
Ultra ATA的第一个标准是Ultra DMA33(简称UDMA33),也有人把它称为ATA-3。符合该标准的主机板和硬碟早在1997年便已经投放市场,目前几乎所有的主机板及硬碟都支援该标准。
Ultra ATA的第二个标准是Ultra DMA66(或者Ultra ATA-66)是由Quantum和Intel在1998年2月份提出的最新标准。Ultra DMA66进一步提高了资料传输率,突发资料传输率理论上可达66.6MB/s。并且采用了新型的CRC回圈冗余校验,进一步提高了资料传输的可靠性,改用80针的排线(保留了与现有的电脑相容的40针排线,增加了40条地线),以保证在高速资料传输中降低相邻讯号线间的干扰。
目前,有Intel 810、VIA Apollo Pro等晶片组提供了对Ultra DMA66硬碟的支援。部分主机板也提供了支援Ultra DMA66硬碟的介面。而新出的大部分硬碟都支援Ultra DMA-66介面。
三、SCSI介面
SCSI的原文是Small Computer System Interface,即小型计算机系统介面。SCSI也是系统级介面(外观如图2),可与各种采用SCSI介面标准的外部装置相连,如硬碟驱动器、扫描器、光碟机、印表机和磁带驱动器等。采用SCSI标准的这些外设本身必须配有相应的外设控制器。SCSI介面早期只在小型机上使用,近年来也在PC机中广泛采用。 最新的Ultra3 SCSI的Ultra160/m介面标准,进一步把资料传输率提高到160MB/s。昆腾也在1998年11月推出了第一个支援Ultra160/m介面标准的硬碟Atlas10K和Atlas四代。SCSI对PC来说应是一种很好的配置,它不仅是一个介面,更是一条汇流排。相信随着技术的进一步发展, SCSI也会像EIDE一样广泛应用在微机系统和外设中。
四、USB介面
USB(Universal Serial Bus)介面(外观如图3)的提出是基于采用通用连线技术,实现外设的简单快速连线,达到方便使用者、降低成本、扩充套件PC机连线外设的范围的目的。目前PC中似乎每个装置都有它自己的一套连线装置。外设介面的规格不一、有限的介面数量,已无法满足众多外设连线的迫切需要。解决这一问题的关键是,提供装置的共享介面来解决个人计算机与周边装置 的通用连线。
USB技术应用是计算机外设连线技术的重大变革。现在USB介面标准属于中低速的介面传输,面向家庭与小型办公领域的中低速装置。比如键盘、滑鼠、游戏杆、显示器、数字音箱、数字相机以及Modem等,目的是在统一的USB介面上实现中低速外设的通用连线。PC主机上只需要一个USB埠,其他的连线可以通过USB介面和USB集线器在桌面上完成。USB系统由USB主机(HOST)、集线器(HUB)、连线电缆、USB外设组成。下一代的USB介面,资料传输率将提高到120Mbps~240Mbps,并支援宽频宽数字摄像装置及新型扫描器、印表机及储存装置。
五、IEEE 1394介面
IEEE 1394是一种序列介面标准,这种介面标准允许把电脑、电脑外部装置、各种家电非常简单地连线在一起。从IEEE 1394可以连线多种不同外设的功能特点来看,也可以称为汇流排,即一种连线外部装置的机外汇流排。IEEE 1394的原型是执行在Apple Mac电脑上的Fire Wire(火线),由IEEE采用并且重新进行了规范。它定义了资料的传输协定及连线系统,可用较低的成本达到较高的效能,以增强电脑与外设如硬碟、印表机、扫描器,与消费性电子产品如数码相机、DVD播放机、视讯电话等的连线能力。由于要求相应的外部装置也具有IEEE 1394介面功能才能连线到1394总线上,所以,直到1995年第3季度Sony推出的数码摄像机加上了IEEE 1394介面后,IEEE 1394才真正引起了广泛的注意。
六、Device Bay
Device Bay是由Microsoft、Intel和Compaq公司共同开发的标准,这一技术可让所有装置协同运作,包括CD-ROM、DVD-ROM、磁带、硬碟驱动器以及各种符合IEEE 1394的装置。
由于Device Bay技术能够处理型别广泛的装置,所以它可建立一种新PC:主机板将仅包括CPU,所有驱动器和装置都在外部与计算机相连,幷包括所有数字家电,例如电视和电话。
尽管Device Bay的规范已于1997年制定完毕,但由于这一技术研发经费开销过高,因此很可能会搁浅。迄今Microsoft还没有准备在未来的作业系统中,支援DeviceBay的具体计划。
图灵、冯.诺依曼,究竟谁是计算机之父?
阿兰·麦席森·图灵 Alan Mathison Turing ,6月23日生于英国伦敦。
是英国著名的数学家和逻辑学家,被称为电脑科学之父、人工智慧之父,是计算机逻辑的奠基者,提出了“图灵机”和“图灵测试”等重要概念。
人们为纪念其在计算机领域的卓越贡献而设立“图灵奖”。
约翰·冯·诺依曼( John von Neumann,1903-1957),“现代电子计算机之父”,美籍匈牙利人,物理学家、数学家、发明家,“现代电子计算机之父”即电脑(即EDVAC,它是世界上第一台现代意义的通用计算机)的发明者。
现在普遍认为的是冯·诺依曼
为什么说冯·诺依曼是计算机之父美籍匈牙利科学家冯·诺依曼最新提出程式储存的思想,并成功将其运用在计算机的设计之中,根据这一原理制造的计算机被称为冯·诺依曼结构计算机,世界上第一台冯·诺依曼式计算机是1949年研制的EDSAC,由于他对现代计算机技术的突出贡献,因此冯·诺依曼又被称为“计算机之父”。
CUI:冯诺依曼体系机构)
说到计算机的发展,就不能不提到德国科学家冯诺依曼。从20世纪初,物理学和电子学科学家们就在争论制造可以进行数值计算的机器应该采用什么样的结构。人们被十进位制这个人类习惯的计数方法所困扰。所以,那时以研制模拟计算机的呼声更为响亮和有力。20世纪30年代中期,德国科学家冯诺依曼大胆的提出,抛弃十进位制,采用二进位制作为数字计算机的数制基础。同时,他还说预先编制计算程式,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。
冯诺依曼理论的要点是:数字计算机的数制采用二进位制;计算机应该按照程式顺序执行。
人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。
根据冯诺依曼体系结构构成的计算机,必须具有如下功能:
把需要的程式和资料送至计算机中。
必须具有长期记忆程式、资料、中间结果及最终运算结果的能力。
能够完成各种算术、逻辑运算和资料传送等资料加工处理的能力。
能够根据需要控制程式走向,并能根据指令控制机器的各部件协调操作。
能够按照要求将处理结果输出给使用者。
为了完成上述的功能,计算机必须具备五大基本组成部件,包括:
输人资料和程式的输入装置记忆程式和资料的储存器完成资料加工处理的运算器控制程式执行的控制器输出处理结果的输出装置
冯.诺依曼的储存程式计算机名叫冯.诺依曼的储存程式计算机名叫 ENIAC。
解释:
20世纪30年代中期,德国科学家冯诺依曼大胆的提出,抛弃十进位制,采用二进位制作为数字计算机的数制基础。同时,他还说预先编制计算程式,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。
冯诺依曼理论的要点是:数字计算机的数制采用二进位制;计算机应该按照程式顺序执行。
人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。
冯.诺依曼理论的核心是储存程式和( )冯诺依曼计算机工作原理的核心是储存程式和程式控制
世界上第一台计算机的发明者是谁?
1、第1代:电子管数字机(1946—1958年)
世界上第一台电脑硬件方面,逻辑元件采用的是真空电子管,主存储器采用汞延迟线、阴极射线示波管静电存储器、磁鼓、磁芯;外存储器采用的是磁带。软件方面采用的是机器语言、汇编语言。应用领域以军事和科学计算为主。特点是体积大、功耗高、可靠性差。速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。
2、第2代:晶体管数字机(1958—1964年)
硬件方的操作系统、高级语言及其编译程序。应用领域以科学计算和事务处理为主,并开始进入工业控制领域。特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数10万次,可高达300万次)、性能比第1代计算机有很大的提高。
3、第3代:集成电路数字机(1964—1970年)
硬件方面,逻辑元件采用中、小规模集成电路(MSI、SSI),主存储器仍采用磁芯。软件方面出现了分时操作系统以及结构化、规模化程序设计方法。特点是速度更快(一般为每秒数百万次至数千万次),而且可靠性有了显著提高,价格进一步下降,产品走向了通用化、系列化和标准化等。应用领域开始进入文字处理和图形图像处理领域。
4、第4代:大规模集成电路机(1970年至今)
硬件方面,逻辑元件采用大规模和超大规模集成电路(LSI和VLSI)。软件方面出现了数据库管理系统、网络管理系统和面向对象语言等。特点是1971年世界上第一台微处理器在美国硅谷诞生,开创了微型计算机的新时代。应用领域从科学计算、事务管理、过程控制逐步走向家庭。
扩展资料电子计算机(electronic computer),通称电脑,简称计算机(computer),是现代的一种利用电子技术和相关原理根据一系列指令来对数据进行处理的机器。电脑可以分为两部分:软件系统和硬件系统。第一台电脑是1946年2月15日在美国宾夕法尼亚大学诞生的ENIAC通用电子计算机。
计算机所相关的技术研究叫计算机科学,以数据为核心的研究称为信息技术。人们把没有安装任何软件的计算机称为裸机。随着科技的发展,现在新出现一些新型计算机有:生物计算机、光子计算机、量子计算机等。
参考资料:
世界上第一台计算机的发明者是谁?
世界上第一台计算机的诞生地是在美国宾夕法尼亚大学 开始 取名为"电子数字积分计算机"简称"埃尼亚克". 由电气工程师 普雷斯波·埃克特和物理学家 约翰·莫奇莱教授 两个人发明的!
世界上第一台计算机的发明者是:美国科学家范内瓦·布什
1930年,美国科学家范内瓦·布什造出世界上首台类比电子计算机。
计算机(puter)俗称电脑,是一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有储存记忆功能。是能够按照程式执行,自动、高速处理海量资料的现代化智慧电子装置。由硬体系统和软体系统所组成,没有安装任何软体的计算机称为裸机。可分为超级计算机、工业控制计算机、网路计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机等。
计算机发明者约翰·冯·诺依曼。计算机是20世纪最先进的科学技术发明之一,对人类的生产活动和社会活动产生了极其重要的影响,并以强大的生命力飞速发展。它的应用领域从最初的军事科研应用扩充套件到社会的各个领域,已形成了规模巨大的计算机产业,带动了全球范围的技术进步,由此引发了深刻的社会变革,计算机已遍及一般学校、企事业单位,进入寻常百姓家,成为资讯社会中必不可少的工具。
计算机的应用在中国越来越普遍,改革开放以后,中国计算机使用者的数量不断攀升,应用水平不断提高,特别是网际网路、通讯、多媒体等领域的应用取得了不错的成绩。1996年至2009 年,计算机使用者数量从原来的630万增长至6710 万台,联网计算机台数由原来的2.9万台上升至5940万台。网际网路使用者已经达到3.16 亿,无线网际网路有6.7 亿移动使用者,其中手机上网使用者达1.17 亿,为全球第一位。
发展历史
计算工具的演化经历了由简单到复杂、从低阶到高阶的不同阶段,例
ENIAC计算机
如从“结绳记事”中的绳结到算筹、算盘计算尺、机械计算机等。它们在不同的历史时期发挥了各自的历史作用,同时也启发了电子计算机的研制和设计思路。
1889年,美国科学家赫尔曼·何乐礼研制出以电力为基础的电动制表机,用以储存计算资料。
1930年,美国科学家范内瓦·布什造出世界上首台类比电子计算机。
1946年2月14日,由美国军方定制的世界上第一台电子计算机“电子数字积分计算机”(ENIAC Electronic Numerical And Calculator)在美国宾夕法尼亚大学问世了。ENIAC(中文名:埃尼阿克)是美国奥伯丁武器试验场为了满足计算弹道需要而研制成的,这台计算器使用了17840支电子管,大小为80英尺×8英尺,重达28t(吨),功耗为170kW,其运算速度为每秒5000次的加法运算,造价约为487000美元。ENIAC的问世具有划时代的意义,表明电子计算机时代的到来。在以后60多年里,计算机技术以惊人的速度发展,没有任何一门技术的效能价格比能在30年内增长6个数量级。
第1代:电子管数字机(1946—1958年)
硬体方面,逻辑元件采用的是真空电子管,主储存器采用汞延迟线
电子管数字计算机
、阴极射线示波管静电储存器、磁鼓、磁芯;外储存器采用的是磁带。软体方面采用的是机器语言、组合语言。应用领域以军事和科学计算为主。
特点是体积大、功耗高、可靠性差。速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。
第2代:电晶体数字机(1958—1964年)
硬体方的作业系统、高阶语言及其编译程式。应用领域以科学计算和事务处理为主,并开始进入工业控制领域。特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数10万次,可高达300万次)、效能比第1代计算机有很大的提高。
第3代:积体电路数字机(1964—1970年)
硬体方面,逻辑元件采用中、小规模积体电路(MSI、SSI),主储存器仍采用磁芯。软体方面出现了分时作业系统以及结构化、规模化程式设计方法。特点是速度更快(一般为每秒数百万次至数千万次),而且可靠性有了显著提高,价格进一步下降,产品走向了通用化、系列化和标准化等。应用领域开始进入文书处理和图形影象处理领域。
第4代:大规模积体电路机(1970年至今)
硬体方面,逻辑元件采用大规模和超大规模积体电路(LSI和VLSI)。软体方面出现了资料库管理系统、网路管理系统和面向物件语言等。特点是1971年世界上第一台微处理器在美国矽谷诞生,开创了微型计算机的新时代。应用领域从科学计算、事务管理、过程控制逐步走向家庭。
由于整合技术的发展,半导体晶片的整合度更高,每块晶片可容纳数万乃至数百万个电晶体,并且可以把运算器和控制器都集中在一个晶片上、从而出现了微处理器,并且可以用微处理器和大规模、超大规模积体电路组装成微型计算机,就是我们常说的微电脑或PC机。微型计算机体积小,价格便宜,使用方便,但它的功能和运算速度已经达到甚至超过了过去的大型计算机。另一方面,利用大规模、超大规模积体电路制造的各种逻辑晶片,已经制成了体积并不很大,但运算速度可达一亿甚至几十亿次的巨型计算机。我国继1983年研制成功每秒运算一亿次的银河Ⅰ这型巨型机以后,又于1993年研制成功每秒运算十亿次的银河Ⅱ型通用并行巨型计算机。这一时期还产生了新一代的程式设计语言以及资料库管理系统和网路软体等。
随着物理元、器件的变化,不仅计算机主机经历了更新换代,它的外部装置也在不断地变革。比如外储存器,由最初的阴极射线显示管发展到磁芯、磁鼓,以后又发展为通用的磁碟,现又出现了体积更小、容量更大、速度更快的只读光碟(CD—ROM)。
世界上第一台电子计算机其实是ABC(Atanasoff-Berry Computer,阿塔纳索夫-贝瑞计算机) ENIAC是第二台。 以前的资料声称第一台电子计算机叫 ENIAC(中文名:埃尼阿克) (电子数字积分计算机的简称,英文全称为 Electronic Numerical Integrator And Computer),它于1946年2月15日在美国宣告诞生。 承担开发任务的“莫尔小组”由四位科学家和工程师埃克特、莫克利、戈尔斯坦、博克斯组成,总工程师埃克特在当时年仅24岁。
世界上第一台的计算机的发明者是谁
世界上第一台电子计算机命名为"埃尼阿克",是1946年美国宾夕法尼亚大学埃克特等人研制成功的。
世界上第一台蒸汽机的发明者是谁世界上第一台蒸汽机是由古希腊数学家亚历山大港的希罗于1世纪发明的汽转球.
世界上第一台电动机的发明者是谁?1834 德国 雅可比 发明直流发动机
1888 南斯拉夫裔美国 特斯拉 发明了交流电动机
1821年英国科学家法拉第首先证明可以把电力转变为旋转运动。最先制成电动机的人,据说是德国的雅可比。他于1834年前后成了一种简单的装置:在两个U型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁。通电后,棒型磁铁与U型磁铁之间产生相互吸引和排斥作用 ,带动轮轴转动。后来,雅可比做了一具大型的装置。安在小艇上,用320个丹尼尔电池供电,1838年小艇在易北河上首次航行,时速只有2.2公里,与此同时,美国的达文波特也成功地制出了驱动印刷机的电动机,印刷过美国电学期刑《电磁和机械情报》。但这两种电动机都没有多大商业价值,用电池作电源,成本太大、不实用。
直到第一台实用直流发动机问世 ,电动机才行了广泛应用。1870年比利时工程师格拉姆发明了直流发电机,在设计上,直流发电机和电动机很相似。后来,格拉姆证明向直流发动机输入电流,其转子会象电动机一样旋转。于是,这种格拉姆型电动机大量制造出来。效率也不断提高。与此同时,德国的西门子接制造更好的发电机,并着手研究由电动机驱动的车辆,于是西门子公司制成了世界电车。1879年,在柏林工业展览会上,西门子公司不冒烟的电车赢得观众的一片喝彩。西门子电机车当时只有3马力,后来美国发明大王爱迪生试验的电机车已达12—15马力。但当时的电动机全是直流电机,只限于驱动电车。
1888年南斯拉夫出生的美国发明家特斯拉发明了交流电动机。它是根据电磁感应原理制成,又称感应电动机,这种电动机结构简单,使用交流电,无需整流,无火花,因此被广泛应用于工业的家庭电器中,交流电动机通常用三相交流供电。
1902年瑞典工程师丹尼尔森首先提出同步电动机构想。
同步电动机工作原理同感应电动机一样,由定子产生旋转磁场,便转子绕组用直流供电,转速固定不变,不受负载影响。因此同步电动机特别适用于钟表,电唱机和磁带录音机。
直流电动机是直流激磁,工作特性接其激磁绕组的接线方式不同而有区别。串激电动机起动转矩大,适用于牵引和起重,并激电动机转速随负载大小而变动较小,且可以调节,可用为定速或调速之用,复激电动机兼有以上两种激磁方式发动机的特性。
交流换向器电动机,即转子具有换向器的交流电动机。因它既可用于交流 又可用于直流,故称作交直流两用电动机或通用电动机,多用于家用电器。
世界上第一台空调的发明者是谁?美国人开利于1902年发明了世界上第一台空调机,人类在漫长历史中,一直在高温天气下表现得被动、沮丧和不快,只能祈祷上帝之手尽快驱走炎热,带来清凉,从某种意义上,开利的工作最能表现人类取代上帝的极大野心。开利不仅是空调的发明者,而且创办了现在世界上最大的空调公司之一:开利公司。在纪念开利发明空调100周年的会议上,强烈重复了这样一种说法:假如没有空调,世界的工作效率会降低40%。
谁发明了世界上第一台计算机。世界上第一台数字式电子计算机是由美国宾夕法尼亚大学的物理学家约翰·莫克利(John Mauchly)和工程师普雷斯伯·埃克特(J – Presper Eckert)领导研制的取名为ENIAC(Electronic Numerical Integrator And Calculator)的计算机。
1942年在宾夕法尼亚大学任教的莫克利提出了用电子管组成计算机的设想,这一方案得到了美国陆军弹道研究所高尔斯特丹(Goldstine)的关注。当时正值第二次世界大战之际,新武器研制中的弹道问题涉及许多复杂的计算,单靠手工计算已远远满足不了要求,急需自动计算的机器。于是在美国陆军部的资助下,1943年开始了ENIAC的研制,并于1946年完成。当时它的功能确实出类拔萃,例如它可以在一秒钟内进行5000次加法运算,3毫秒便可进行一次乘法运算,与手工计算相比速度要大大加快,60秒钟射程的弹道计算时间由原来的20分钟缩短到30秒。但它也明视讯记忆体在着缺点。它体积庞大,机器中约有18800只电子管,1500个继电器,70000只电阻及其他各类电气元件。这样ENIAC就有了8英尺高(约2.44米)、3英尺宽、100英尺长的身躯,重达30吨,耗电140千瓦。另外,它的储存容量很小,只能存20个字长为10位的十进位数,而且是用线路连线的方法来编排程式,因此每次解题都要靠人工改接连线,准备时间大大超过实际计算时间。
尽管如此,ENIAC的研制成功还是为以后电脑科学的发展提供了契机,而每克服它的一个缺点,都对计算机的发展带来很大影响,其中影响最大的要算是“程式储存”方式的采用。将程式储存方式的设想确立为体系的是美国数学家冯·诺依曼(Von Neumann),其思想是:计算机中设定储存器,将符号化的计算步骤存放在储存器中,然后依次取出储存的内容进行译码,并按照译码结果进行计算,从而实现计算机工作的自动化。
世界上第一台电视游戏机的发明者是谁?1966年出生于德国的犹太人拉尔夫.贝尔设计了世界上第一款名为`棕盒`(BROWN BOX)的电视游戏机,1972的的第七个原形机有MAGNAVOX公司推出正式名称叫~奥德赛`。因为贝尔拥有游戏机的发明专利,在其后的几十年里,包括像任天堂,世嘉在内的许多游戏公司都要向贝尔交纳一定的权利金。2006年美国总统布什亲自给拉尔夫.贝尔颁发了国家技术勋章.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。